Code: EC5T5

III B.Tech - I Semester – Regular/Supplementary Examinations October 2018

DIGITAL IC APPLICATIONS (ELECTRONICS AND COMMUNICATION ENGINEERING)

Duration: 3 hours

Max. Marks: 70

PART - A

Answer *all* the questions. All questions carry equal marks 11x 2 = 22 M

1.

- a) Write the structural program for an AND gate Verilog HDL.
- b) What is the difference between net delay and gate delay?
- c) Explain logic levels of CMOS Logic?
- d) What do you mean by multiple emitter transistor used in TTL?
- e) In terms of power consumption compare CMOS with TTL.
- f) Design an NAND gate using 2x1 Multiplexer.
- g) Draw the truth table of seven segment Decoder.
- h) Draw the state table of Ring Counter.
- i) Convert J-K flipflop to D flip-flop with enable input.
- j) What is EEPROM?
- k) Explain two dimensional decoding in ROM memory?

Answer any *THREE* questions. All questions carry equal marks. $3 \ge 16 = 48 \text{ M}$

2. a) Design 8x1 MUX using two 4X1 MUX and one 2X1	MUX
and implement the same in Verilog HDL.	10 M
	1
b) Explain non-blocking assignments with proper examp	
	6 M
3. a) What is interfacing? Explain interfacing between low	
voltage TTL to low voltage CMOS logic.	10 M
b) Briefly list out the differences between TTL, ECL &	
CMOS logic family.	6 M
4. a) Implement Arithmetic and Logic Unit using Verilog H	HDL.
	10 M
b) What is a three-state gate and explain each type of thr	ee-
state gate with truth tables?	6 M
5. a) Write a Verilog HDL code for 4-bit right-to-left shift	
register using data flow model.	8 M
b) Draw the state transition tables of JK and T flip flops a	and
implement them in Verilog HDL.	8 M

6. a) With neat circuit diagram explain 2D Decoding in RAM. 10 M

b) Explain the working difference in EPROM and EEPROM. 6 M